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Abstract —Creating a perceptually distinct coloring for visualizing large data sets with one or more related properties can be dif cult, even for a domain
expert. To aid in the color selection process, we present a method for selecting an optimized coloring for these data sets by applying a force-directed
algorithm. The method we have implemented selects hue values using a constraint graph derived from relationships within the data. This optimal set of
hues can then be converted to colors using any color space and used to color the data points in a visualization. This method is demonstrated through a
geographical domain problem involving school districts, speci cally de picting elementary to middle to high school feeder patterns. Further, the method
is applied to two different sets of constraints for creating visualizations of directory structures: le size relationship constraints and domin ant le type
constraints.

Index Terms —Human Factors, User Interfaces, Optimization, color selection, map visualization, optimization
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1 INTRODUCTION

This project works towards a domain independent searcbebadly and dissimilarity relationships must be identi ed betn
color selection technique for visualizing data with diseree- data points, which is then used to create a constraints graph
lated properties. The goal of the coloring technique dbedri Of those relationships (edges) between the data pointe&)od

is to generate colors for data points in such a way that the simfthe edges within the constraint graph can also be assigned a
larities and dissimilarities between the data points apaegnt. weight. Similarity relationships between data points have
Creating a coloring by hand that accomplishes this goal cégrce to pull the node colors closer together, and disshityla

be dif cult, particularly for large data sets which is whytau relationships apply a force to push the node colors aparteOn
matic selection can be useful. Although the relationstighé the constraint graph has been constructed, a force-diredtte
data are domain speci ¢, we present a process and exampleg@fithm optimizes the forces in the graph to nd an optimal
translating these relationships to a constraint graph siitii-  distance between node colors that satis es the push and pull
larity and dissimilarity constraints as edges and datatp@ia Of the constraint forces between nodes. Once the colors have
nodes. been selected, the original data set can be visualized tising

For data sets which have multiple discrete or categoricg@énerated colors, in any type of visualization. The result i
properties, there are differing approaches to visualifiwgre- Visualization of the original data, where colors represeatre-
lationships between the data. A common approach is to gisplationships between the discrete or categorical traitb@tlata
patterns (stripes, textures, other region partitioninghoas) points.
but others use colors to represent properties in a visuiza
which are either blended or each property is mapped to ardiffé RELATED WORK
ent color component (e.g., hue, saturation, and value)hign tPrior research in this area explores how coloring can be used
work, we we focus on hue to visualize the discrete propeirtiesin different visualization approaches. Much of the avdéaie-
the data, that way saturation and brightness can be reskmvedsearch has focused on using ranges of colors to represgesran
visualizing other parts of the data, including continuoatad  of continuous data. That approach is not always effective as

The color selection produced by the algorithm will be demost individuals do not have an intuitive sense of orderog f
pendent on the constraints derived from the data being lvisuues, as such using a rainbow color scale is ineffectiveiar d
ized. As constraints are dependent on the type of data bejrlgying scalar data [2], though our coloring algorithms ap-
visualized, and the precedence of those constraints isidemaroach of using color sets is not bound by this constraint as
dependent, some thought must go into selection and weightva# are exploring discrete traits. Other areas of researed ha
the constraints when applying this coloring technique. Bs d explored ways of using different colors to present multigd¢a
cussed in section 4, the school district problem has vefgrdif points [7] - the school district coloring domain provides an
ent categorical constraints as compared to the directong-st example of how this approach is useful.
ture or le type domains. Of interest to our approach, other work has focused on se-

Our approach to generating the color sets involves seveledting visually distinct colors by using distance betweef
steps. For each speci c domain example, a set of similapts in a color space. Physiological factors affect humanorcol
perception, and using Euclidean distance to balance cwlors
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from data points to colors. These data points can be anything
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Fig. 1. An example run of the color change algorithm depicting the rate of change in hue values for the individual nodes after every 100 iterations. As the series
progresses, the change in hue values falls to zero as each node as the forces between nodes are balanced.

from le types, to map regions, to folders. The colors are s&.3 Color Distance
lected based the relationships within the data. In sectis®4 g se the range of all possible hues on the circle is one-
discuss the methodology for determining these relatiqu;s;hidimensionaI and wrapped, we de ne a distance metrito

Once the relationships are been determined, they are repife s e the differences between the hues. This distande met
sented as a constraint graph where nodes represent dats PQiNya ned for any two colors on the circle; andc, 2 (0; 1],
to be colored in a visualization of the full data set and edggg.

represent the identi ed relationships. This constraitatarand

is used to generate a color for each node by applying a force-

directed layout method to balance the constraints in thetgra r(cy;c) =
Force-directed layout algorithms (often referred to asmspr

layout algorithms) simulate forces of repulsion and attoac This de nition yields distances in the range; 1], where a

acting on objects. These algorithms are often used in gragliance of 1 corresponds to colors on the opposite sidéeof t
drawing where the goal is to nd positions for the nodes thaf;

N i ircle jc1  Coj = 3).
locally minimize the forces on the nodes. By representirg th
node positions as a hue value and using the edges in our c@r Forces

straint graph, we can use these methods to produce optimizl%d ff h h des in th
color assignments. ere are two types of forces that act on the nodes in the con-

straint graph: edge forces (similariffigim and dissimilarity;fyis

; edges) and general color separation fortgs, Each force and
3.1 Constraint Graph edge type is described in more detail beI%v?/. Additionalhgle
Each data point to be colored in the visualization of thedatia forces has a Corresponding Weight associated WM]&;INW( Wis,
set translates to a node in the constrain graph, and the &tent andwse) that re ects the importance of that force and is used
relationships translate to edges. There are two types (ﬁgﬂg to scale the force Corresponding force value.
represent two types of relationships within the data: ity The force-directed layout is updated iteratively, eithetilu
relationships, and dissimilarity relationships. Simtlaedges the system stabilizes (i.e., the velocity of all color assignts
supply a forces that pull hue values closer together, fieglilt  phecomes smaller than a speci ed constagg) or until a maxi-
nal colors that are visually related. Dissimilarity edge®n- myum number of iterations has elapsed. In gure 2, we show the
versely, supply a forces that pushes hue values apartingeldchange in hue value after each 100 interactions. Noticeathat
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nal colors that are visually distinct. the number of iterations increase, the change in hue vaktes b
_ tween iterations falls, and eventually decreases to zewonB
3.2 Color Circle each iteration, we compute all of the forces acting upon each

The position of each node is represented as a hue valueNffle, compute their weighted sum, and apply that force th eac
the range (0,1] and is initialized randomly in that rangeisThnode which changes its hue value.

method of representing node position effectively createsea ~ When each force is computed, the proper direction of the
dimensional, wrapped space in which to execute the ford@rce needs to be determined because of the wrapped nature
directed algorithm. Once the hue values have been generaf¥fdthe color space. Given two hue values, (c2), the proper

they can be used to de ne colors in any color space by usinglection for a force that pushes the nodes aptyi Or Tsep

constant lightness and saturation. can be determined as follows:

In our implementation, we convert the hues to colors us- (
ing the HLS color space but a better choice may be to use the s(ci:c) = 1 a+(1 ©) % @)
L ;u ;v color space due to its perceptual uniformity. Speci - ' 1 i+ (1 o) > %

cally, theL ;u ;v color space has the characteristic that similar
distances in the space correspond to similar perceptual-dif For forces that pull nodes togethdg;f,), this value may sim-
ences between colors. ply be negated, or the input order of the nodes may be reversed



Similarity Edges Similarity edges represent attractivecolor selection algorithm. This process involves idemtifythe
forces,Tsim, that act on nodes to ensure that the colors of thodata points which will be colored in a visualization, the way
nodes are visually similar. Each similarity edge may als@tsa which the data point are related, and the types of theseéaelat
weight associated with it representing how closely thosieso ships. As discussed in section 3, The relationships canthave
are related. Those weights are in addition to the overalyiatei types, similarity relationships and dissimilarity retatships.
of each force type. For instance, if we have three nodes rep- o
resenting three le typesdoc, :docx and:pdf, a:doc leis 4.1 School Districts
more closely related tmlocx les than a:pd f le. Therefore an
edge betweerdocand:docxwould have a higher weight than
an edge betweerdoc and:pdf. The value of the similarity
force Tsim(c;) for the ith color is de ned as:

Toim(ci) = A1 (G ci)W(ciic)) (3)
¢
Wherew(c;; ¢j) is the weight of the edge betwegrandc; in
the constraint graph. The value of the force increasestlinea
with the distance between two colors.

Dissimilarity Edges Dissimilarity edges represent repul-
sive forces that act on nodes to ensure that the colors ofsno
are visually distinct. As with similarity edges, each edgaym
also have a weight associated with it. For example, if colo
ing a map, the user may want adjacent regions to have ea:
distinguishable colors so the borders of the regions arar.cle
To produces that result, adjacent regions could be conthegte
dissimilarity edges. The value of this repulsive disssanity
force Tyis(ci) for thei color assignment is de ned as:

o
Tais(c) = & (1 r(cici))®w(ci;c)) 4)
Cj Fig. 2. The constraint graph for the school districts domain problem depicting the
edge weights between the school data points. The outer ring represents elemen-
Again, wherew(q : C]-) is the Weight of the edge between tary schools and the inner ring shows middle schools.

andc; in the constraint graph. For this force, the value de-
creases with the square of the distance between the twascolor Our rst domain is a geographical visualization problem in-

Separation Forces The default separation forces are noY©!ving how neighborhood regions within a suburban Margllan
de ned within the constraint graph, but can be thought of £&2Unty map to school districts, and how to visually repréesen
edges that connect each node to every other node in the grifpfhthree level feeder patterns of elementary, middle, agid h
and push the nodes apart (much like the dissimilarity edge§?h°°| districts. The result of the visualization is a cgunap

These forces are meant to enforce a minimum distance betw®éh regions colored by school district. The utility of thes-
nodes so that each node color is visually distinguishabl. aample comes in working with a local school board to visualize

ditionally, this force keeps colors that should be simiami Proposed adjustments to school districts and how it impaets
being exactly the same color. In the some domains, it may [§&12 school feeder patterns. _ _ _
desirable to be able to identify each data point in order tkema Our rst consideration is what data points will be colored in

a legend which this force enables. By de nition, these fercé?Ur Mmap visualization. The goal is to be able to see schoel dis
are explicitly short-distance repulsive forces. The fdecap- tricts and how these districts are related, so the schomlaigsx

plied only if the distance (c1;cy) is lower than a prede ned become the nodes in our constraint graph. The next considera

boundary valuehsepmaxThe separation force fay is de ne as: tionis how these nodes are related. In this domain, theravare
clear relationships which we explore, feeder patterns aag m

o r(ci;cj) adjacency, but other relationships such as standardiztidde
Teep(Gi) = a 1 : ®) : : -
Sep\t bse scores or school size could be considered as constraints. As
¢ r(Ci;Cj) < bsepmax pmax

school assignments are discrete categorical values, rfpatie
This force decreases linearly with the distance between tuarns work well for demonstrating this coloring technique.

colors becoming 0 when(cy;C2) = bsepmax Now that we have identi ed the relationships, we must cat-
egorize them as similarity or dissimilarity constraints the
case of the feeder patterns, we would like feeder schools to b
We present three example domain applications to demoestratsimilar color to the higher level school they feed into, 80 0
the color selection algorithm. For each example, we descrifeeder relationship is a similarity constraint. Becaustnefna-
the process used to determine the relationships in the ddtage of map visualizations, it is easier to see region boriaga
which translate to the constraint edges graph used by by thbBen adjacent regions have distinct colors. Thereforegtihe

4 APPLICATION DOMAINS



ors of school districts which are adjacent should be distinc
dissimilar so the map adjacency relationships is a disafityl
constraint. Note that only school at the same level (eleme
tary, middle or high school) can be adjacent because distic
different levels over lap.

The nal constraint graph for this visualization is comgris
of school districts as nodes, feeder patterns as similaaty
straints and districts adjacency as dissimilarity cofstsa In
addition to this basic constraint structure, the feedetepat
edges were each assigned a weight proportional to the num
of students moving from one school to the other. This redult
in the lower level school with the most students moving to
higher level school having a color closest to the higherllev
school.

4.2 Directory Structure . . o
Fig. 5. The constraint graph generated from the le types depicted in gure 4.

values instead of generating colors to be used directly isw& v
alization. This was accomplished by modeling the relatijps
between categories in the data rather than the relationgietp
tween the data points themselves. The desired result isto ge
erate a coloring for the legend where similar categoriesaare
signed similar colors. For a small number of categories thi
could be accomplished by hand. For example, if you were to
assign a color to elementary, middle and high schools it @oul
be easy to chose yellow for elementary, orange for middie, an
red for high schools, but as the set of categories expandsand
. : : , . more complex relationships, it becomes increasingly dift¢o
Fig. 3. The constraint graph for the directory structure domain problem. Solid y
lines between nodes depict parent-child relationships and dashed lines represent ~ Create the color set by hand. To demonstrate this method, we
neighbor relationships (nodes sharing the same parent node). reused the le system domain but added a le type property to
each folder which was the most common le type in the given
The second is a domain problem that involves visualizing dig|der. This le type property is our category which can be/an
rectory structures. This depicts similarity relationshgd size |g type, but we used a subset of common le types for our leg-
between parent and child directories along a directorytttee  end. Even our subset of le types was to large and complex to
arChy. For this Visualization, the items that will be cob@e Color We" by hand so we represented the re|ationships tmtwe
f0|derS in the directory structure so f0|derS W|” be the esd the |e types as a tree Wh|Ch we then Converted to a Constraint
in our constraint graph. The most obvious relationship eetw graph.
folders is a parent-child relationship so we chose to hav@ia s Figyre 4 is a small portion of the relationship tree showing
larity constraint between parent folders and their chitdrEhis ¢ relationships between document types. Notice that DOC
constraint alone is not that interesting, but there is als@it 5,4 DoOcX are both leaves at the same depth because they are
to these constraints based on the percent the childs sife i%@ry similar le types and ODT (Open Document Format) is
the parents size. This creates a coloring where it is easydgyally as similar to either of those types but not as sinaifar
see which sub-folder contains most of the content of themargney are to each other so it is placed as a leaf node one level up
folder. from DOC and DOCX. Also notices that PDF is a document
The second constraintin the graph for this example is similg;pe put is not an editable type like the other types so PDF is
to adjacent school districts in the previous domain. We @oupjaces one level above the other types. It is useful to think o
like nodes that are adjacent in our visualization to be Wiguathe tree as a nested list where each list contains typesat a
distinct and in the sunburst visualization we chose ( guje 3similar and the types within that group that are more sintar

folders at the same depth are displayed in a ring. If foldef§en put into a sub-list. The tree in gure 4 can be represénte
in the same ring were assigned very similar colors, is woulg, the following nested list structure:

be dif cult to see the boundaries between their display srea

Therefore, folders at the same depth are assigned dissisnila (((DOCX; DOC); ODT); (T XT;HT ML); PDF)
constraints.

. Once this tree has been constructed, a constraint graph is
4.3 File Type generated by connecting each type, or node, to every otlder no
The last example is different from our previous examples imith a similarity constraint. As with the le size graph, tiva-
that we will use the algorithm generate a legend for a set pbrtant part of these constraints is the weight. The weigtés



Fig. 4. An example le-type relationship tree displaying the relationship bet ween similar and dissimilar le types.

determined using the tree structure by assign a wight of 1 &4 School Districts

tween nodes at the bottom of a branch. For instance, DOC Qg re 6, two levels of the school district feeder pattgata

DOCX are at the same depth, and there are no sub-trees atithGq alized. The map on the top right depicts the schoal dis

same level, so the weight of the edge between these types i§ilis for middle schools, where the map on the top left shows
L|keyv|se, the edge between TXT and HTML .has gwelght of Jelementary school areas. Focusing on the top left area bf bot
Moving up the tree from these c_ieepest relationships, thesad%apsy the two elementary schools (green and purple) are adja
at shallower levels have the weight(tlepth+ 1) and are con- cant and distinctly colored as compared to one another. €'hos
nected to every other node at the same level, as well as nodegj, ejementary school districts combined make up the whole

any sub-trees of the branch. By this method, ODT has an edg&, of their parent node, the middle school area of the map

tlo both DOC and DOCX, and these edges both have a wight@ficted in blue. Neither of the elementary schools areredio

3 Following from there, PDF has an edge to all other typ§gentically to the parent, as a stronger general separédios
shown with weight;. If there are sub-trees at a given level thajas applied when coloring this data. For this visualizattbe
have different depths, the maximum depth of the sub-treesyisttom map depicts both levels of the hierarchy togethergusi
used to calculate the weight. colored rings - the inner being the middle school and theroute
Figure 5 shows the nal constraint graph derived from theng being the elementary school.

le type relationship tree. The nodes are colored with the co The bottom visualization enables the viewer to identify- cer
ors generated by the algorithm and the thickness of the edd@is anomalies. Because the weight of the similarity catiists
shows the derived weight. Note that the edges between TXsTproportional to the feeder pattern, the largest of chddes
and HTML, and DOC and DOCX have the highest weight. Thiglementary schools) feeding into a parent (middle schaitil)
coloring can now be used to color any data which has a le tygee most similarly colored to its parent. Where the multiple
property, which we discuss an example of below. Althougteeder schools have a similar number of students feediiag int
we use le types for this example, a legend for any categbricthe parent, the similarity constraint of the children to pze-
property could be created using this method. ent will all be similar, yielding uniformly distributed cois.

In the case of an elementary school where the feeder ratio is

low as compared to its neighbors, that elementary schoa nod
5 RESULTS will have a low similarity weight as compared to the combined

general separation force and the dissimilarity constnatirsh-
Once the constraints for each domain are generated, it is pt¥ it from its neighbors, yielding a color that is very diféat
sible to generate visualizations of the original data ushey from those around it. As schools with low feeder ratios ass le
generated colors for the data points within the originahdatdesirable, especially when split between multiple regidues
With the carefully selected constraints for each applicatio- ing able to quickly identify those regions is very useful he t
main, the optimized color set generated can be applied to #@unty school system when considering school district deun
data through a visualization toolkit of the users choosikgr ~ary changes.
the le system examples that follow, we use the JavaScrifgtIn
Vis toolkit to generate the visualizations, for the schastritt
visualization a custom Java application was created tdalisp The visualization in Figure 7, depicts a three-level divegt
and color the map areas. With the completed visualizatiodserarchy, and the visualizations in Figures 8 shows a deepe
the viewer can effectively analysis the relationships imithhe directory hierarchy. Examining the visualizations allothe
original data because of the optimized color set generaged \iewer to identify patters of directories where the paremt t
the coloring algorithm. child to directories are similar or dissimilar. This is ugeih

5.2 Directory Structure



Fig. 6. Example visualization from the school district domain area. Top: Maps showing elementary (left) and middle (right) school assignments. Bottom: Map showing
both elementary and middle school assignments merged on one map using a ring pattern. Within each region (neighborhoods sharing the same elementary and middle
school assignment), the outer ring shows the elementary school assignment, and the inside shows the middle school assignment. For added clarity, the boundaries of
the middle school assignments are displayed as black lines. The maps also show the locations of schools: diamonds indicate elementary schools and squares indicate
middle schools. [4].
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Fig. 8. This visualization depicts the Directory Structure constraint set as applied
Fig. 7. This nal visualization from the directory structure domain proble m displays  to a deeper le system hierarchy than that of Figure 7.
a directory hierarchy in concentric rings out from the root directory in the center.
The directories have been colored with the automatic coloring algorithms, and
those directories that have a similar size will have a similar coloring as the parent
of that directory.



Fig. 10. A larger and deeper example data set colored using the le type domain.

well as exploring using the lightness and saturation coraptsn
of the HLS color space for visualizing continuous attritsuté
_ _ - _ _ o data points colored with the algorithm presented.

. e i iualialon depicts e same e 2= depiyed nFoure . Additionally, there are opporiunities to optimize and sim-
plify the algorithm by consolidating the forces. This could
involve combining the similarity and dissimilarity coraimts

nding outliers in the hierarchy, most notably directoriggt into a single relationship with positive and negative value

are empty or that contain signi cantly larger les than tleos

the hierarchy around it. ACKNOWLEDGMENTS
_ This project was based heavily on the unpublished p&opéor
5.3 File Type Selection for Visualizing Multiple Related Categoricabper-

Lastly, the image in Figure 9 depicts the same directoryahnier tiés by Blazej Bulka, Penny Rheingans, and Marie desJardins,
chy as the one displayed in Figure 7, but with a different $et 8nd we would like to thank them for providing the code for the
constraints. The colors selected by the algorithm are reedba coloring algorithm. We would also like to extend thanks te th
on the data being visualized, rather, the coloring algorittas University of Maryland, Baltimore County Center for Women
and sub-type associations. Each node in the le systemthierBappen.

chy is bound into a single le type based on the count of th&EFERENCES

most common le type within the directory. This allows the _ .

. . . [1] L. BERGMAN, B. ROGOWITZ, and L. TREINISH. Color selection for visizmhg
viewer to see groups of folders which all have similar domt- multiple related categorical properties Proceedings of IEEE Visualization 1995
nant le types_ pages 118 — 125, 1995.

. . . . . Q12 D. BORLAND and R. TAYLOR. Rainbow color map (still) considered harmf&lEE
In this case, as previously mentioned, being able to quickly computer Graphics and Applicationsages 27, 2, 14 — 17, 2007.

nd folders buried in a directory hierarchy that have an ehvil3l C.A. BREWER. Color use guidelines for data representatlorRroceedings of the
Section on Statistical Graphicpages 55 — 60, 1999.

ously dissimilar type as compared to those around it. Of ify B BULKA, P. RHEINGANS, and M. desJARDINS. A rule-based tool for assist
terest here is the eld of digital forensics in law enforcethe _  colormap selectionUnpublished.2011. .
. [Fé D. FARNSWORTH. The farnsworth-munsell 100 hue test for the exaroinaif
where it may be necessary to search a SUSDECIS computer Scolor discrimination. 1957.
for |||ega| materials. Search|ng an arb|trar|ly nestechdiory [6] C.G.HEALEY. Choosing effective colours for data visualizatidm Proceedings of
. . . |IEEE Visualization 1996 (San Franciscpopages 263 — 270, 1996.
structure by hand is a slow process for a human, and having jj- p. RHEINGANS. Task-based color scale design.Proceedings of Applied Image

sualization tools to quickly locate areas of potentialiest are and Pattern Recognition 199%pages 35 - 43, 1999.
. . . [8] N. ROBERTSON, D. P. SANDERS, P. SEYMOUR, and R. THOMAS. A newwof
useful in ndmg evidence. of the four-color theorenElectronic Research Announcements of the American Math-
ematical Societypages 2, 17 — 25, 1996.

[9] C. WARE. Color sequences for univariate mapdEEE Computer Graphics and
6 FUTURE WORK / CONCLUSIONS Applications pages 8, 5, 41 — 49., 1988.

We have presented a method for automatically generating a
constraint-based, optimized color set for use in visuagjzlata
points with one or more related discrete characteristiogther,

we have demonstrated that the method is useful when applied t
two very different application domains. Further work todsr
applying this technique to additional domains will congnas



