
Generalized Automatic Color Selection for Visualization
Amy Ciavolino and Tim Burke

Abstract —Creating a perceptually distinct coloring for visualizing large data sets with one or more related properties can be dif�cult, even for a domain
expert. To aid in the color selection process, we present a method for selecting an optimized coloring for these data sets by applying a force-directed
algorithm. The method we have implemented selects hue values using a constraint graph derived from relationships within the data. This optimal set of
hues can then be converted to colors using any color space and used to color the data points in a visualization. This method is demonstrated through a
geographical domain problem involving school districts, speci�cally de picting elementary to middle to high school feeder patterns. Further, the method
is applied to two different sets of constraints for creating visualizations of directory structures: �le size relationship constraints and domin ant �le type
constraints.

Index Terms —Human Factors, User Interfaces, Optimization, color selection, map visualization, optimization

1 INTRODUCTION

This project works towards a domain independent search-based
color selection technique for visualizing data with discrete re-
lated properties. The goal of the coloring technique described
is to generate colors for data points in such a way that the simi-
larities and dissimilarities between the data points are apparent.
Creating a coloring by hand that accomplishes this goal can
be dif�cult, particularly for large data sets which is why auto-
matic selection can be useful. Although the relationships in the
data are domain speci�c, we present a process and examples of
translating these relationships to a constraint graph withsimi-
larity and dissimilarity constraints as edges and data points as
nodes.

For data sets which have multiple discrete or categorical
properties, there are differing approaches to visualizingthe re-
lationships between the data. A common approach is to display
patterns (stripes, textures, other region partitioning methods)
but others use colors to represent properties in a visualization
which are either blended or each property is mapped to a differ-
ent color component (e.g., hue, saturation, and value). In this
work, we we focus on hue to visualize the discrete propertiesin
the data, that way saturation and brightness can be reservedfor
visualizing other parts of the data, including continuous data.

The color selection produced by the algorithm will be de-
pendent on the constraints derived from the data being visual-
ized. As constraints are dependent on the type of data being
visualized, and the precedence of those constraints is domain-
dependent, some thought must go into selection and weight of
the constraints when applying this coloring technique. As dis-
cussed in section 4, the school district problem has very differ-
ent categorical constraints as compared to the directory struc-
ture or �le type domains.

Our approach to generating the color sets involves several
steps. For each speci�c domain example, a set of similar-

� Amy Ciavolino is a student at the University of Maryland, Baltimore
County, E-mail: aci1@umbc.edu.

� Tim Burke is a student at the University of Maryland, Baltimore County,
E-mail: tburke2@umbc.edu.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

ity and dissimilarity relationships must be identi�ed between
data points, which is then used to create a constraints graph
of those relationships (edges) between the data points (nodes).
The edges within the constraint graph can also be assigned a
weight. Similarity relationships between data points havea
force to pull the node colors closer together, and dissimilarity
relationships apply a force to push the node colors apart. Once
the constraint graph has been constructed, a force-directed al-
gorithm optimizes the forces in the graph to �nd an optimal
distance between node colors that satis�es the push and pull
of the constraint forces between nodes. Once the colors have
been selected, the original data set can be visualized usingthe
generated colors, in any type of visualization. The result is a
visualization of the original data, where colors representthe re-
lationships between the discrete or categorical traits of the data
points.

2 RELATED WORK

Prior research in this area explores how coloring can be used
in different visualization approaches. Much of the available re-
search has focused on using ranges of colors to represent ranges
of continuous data. That approach is not always effective as
most individuals do not have an intuitive sense of ordering for
hues, as such using a rainbow color scale is ineffective for dis-
playing scalar data [2], though our coloring algorithms ap-
proach of using color sets is not bound by this constraint as
we are exploring discrete traits. Other areas of research have
explored ways of using different colors to present multipledata
points [7] - the school district coloring domain provides an
example of how this approach is useful.

Of interest to our approach, other work has focused on se-
lecting visually distinct colors by using distance betweencol-
ors in a color space. Physiological factors affect human color
perception, and using Euclidean distance to balance colorsin
a perceptually uniform color space such as theL� ;u� ;v� color
space allows for the selection of effective color sets [3]. None
of this work addresses the issue of automatic color set selection
and optimization.

3 ALGORITHM

The goal of the color set algorithm is to produce a mapping
from data points to colors. These data points can be anything

Fig. 1. An example run of the color change algorithm depicting the rate of change in hue values for the individual nodes after every 100 iterations. As the series
progresses, the change in hue values falls to zero as each node as the forces between nodes are balanced.

from �le types, to map regions, to folders. The colors are se-
lected based the relationships within the data. In section 4we
discuss the methodology for determining these relationships.
Once the relationships are been determined, they are repre-
sented as a constraint graph where nodes represent data points
to be colored in a visualization of the full data set and edges
represent the identi�ed relationships. This constraint graph and
is used to generate a color for each node by applying a force-
directed layout method to balance the constraints in the graph.

Force-directed layout algorithms (often referred to as spring
layout algorithms) simulate forces of repulsion and attraction
acting on objects. These algorithms are often used in graph
drawing where the goal is to �nd positions for the nodes that
locally minimize the forces on the nodes. By representing the
node positions as a hue value and using the edges in our con-
straint graph, we can use these methods to produce optimized
color assignments.

3.1 Constraint Graph

Each data point to be colored in the visualization of the fulldata
set translates to a node in the constrain graph, and the identi�ed
relationships translate to edges. There are two types of edges to
represent two types of relationships within the data: similarity
relationships, and dissimilarity relationships. Similarity edges
supply a forces that pull hue values closer together, resulting in
�nal colors that are visually related. Dissimilarity edges, con-
versely, supply a forces that pushes hue values apart, yielding
�nal colors that are visually distinct.

3.2 Color Circle

The position of each node is represented as a hue value in
the range (0,1] and is initialized randomly in that range. This
method of representing node position effectively creates aone-
dimensional, wrapped space in which to execute the force-
directed algorithm. Once the hue values have been generated,
they can be used to de�ne colors in any color space by using a
constant lightness and saturation.

In our implementation, we convert the hues to colors us-
ing the HLS color space but a better choice may be to use the
L� ;u� ;v� color space due to its perceptual uniformity. Speci�-
cally, theL� ;u� ;v� color space has the characteristic that similar
distances in the space correspond to similar perceptual differ-
ences between colors.

3.3 Color Distance

Because the range of all possible hues on the circle is one-
dimensional and wrapped, we de�ne a distance metricr to
measure the differences between the hues. This distance metric
is de�ned for any two colors on the circle,c1 andc2 2 (0;1],
as:

r (c1;c2) =

(
2jc1 � c2j : jc1 � c2j � 1

2

1� 2jc1 � c2j : jc1 � c2j > 1
2

(1)

This de�nition yields distances in the range(0;1], where a
distance of 1 corresponds to colors on the opposite sides of the
circle (jc1 � c2j = 1

2).

3.4 Forces

There are two types of forces that act on the nodes in the con-
straint graph: edge forces (similarity,~fsim and dissimilarity,~fdis
edges) and general color separation forces,~fsep. Each force and
edge type is described in more detail below. Additionally, each
forces has a corresponding weight associated with it (wsim, wdis,
andwsep) that re�ects the importance of that force and is used
to scale the force corresponding force value.

The force-directed layout is updated iteratively, either until
the system stabilizes (i.e., the velocity of all color assignments
becomes smaller than a speci�ed constantvmin) or until a maxi-
mum number of iterations has elapsed. In �gure 2, we show the
change in hue value after each 100 interactions. Notice thatas
the number of iterations increase, the change in hue values be-
tween iterations falls, and eventually decreases to zero. During
each iteration, we compute all of the forces acting upon each
node, compute their weighted sum, and apply that force to each
node which changes its hue value.

When each force is computed, the proper direction of the
force needs to be determined because of the wrapped nature
of the color space. Given two hue values (c1, c2), the proper
direction for a force that pushes the nodes apart (~fdis or ~fsep)
can be determined as follows:

s (c1;c2) =

(
� 1 : c1 + (1� c2) � 1

2

1 : c1 + (1� c2) > 1
2

(2)

For forces that pull nodes together (~fsim), this value may sim-
ply be negated, or the input order of the nodes may be reversed.

Similarity Edges Similarity edges represent attractive
forces,~fsim, that act on nodes to ensure that the colors of those
nodes are visually similar. Each similarity edge may also have a
weight associated with it representing how closely those nodes
are related. Those weights are in addition to the overall weight
of each force type. For instance, if we have three nodes rep-
resenting three �le types,:doc, :docx, and:pd f, a :doc �le is
more closely related to:docx�les than a:pd f �le. Therefore an
edge between:docand:docxwould have a higher weight than
an edge between:doc and :pd f. The value of the similarity
force~fsim(ci) for the ith color is de�ned as:

~fsim(ci) = å
c j

r (ci ;c j)w(ci ;c j) (3)

Wherew(ci ;c j) is the weight of the edge betweenci andc j in
the constraint graph. The value of the force increases linearly
with the distance between two colors.

Dissimilarity Edges Dissimilarity edges represent repul-
sive forces that act on nodes to ensure that the colors of nodes
are visually distinct. As with similarity edges, each edge may
also have a weight associated with it. For example, if color-
ing a map, the user may want adjacent regions to have easily
distinguishable colors so the borders of the regions are clear.
To produces that result, adjacent regions could be connected by
dissimilarity edges. The value of this repulsive disssimilarity
force~fdis(ci) for thei color assignment is de�ned as:

~fdis(ci) = å
c j

(1� r (ci ;c j))2w(ci ;c j) (4)

Again, wherew(ci ;c j) is the weight of the edge betweenci
and c j in the constraint graph. For this force, the value de-
creases with the square of the distance between the two colors.

Separation Forces The default separation forces are not
de�ned within the constraint graph, but can be thought of as
edges that connect each node to every other node in the graph
and push the nodes apart (much like the dissimilarity edges).
These forces are meant to enforce a minimum distance between
nodes so that each node color is visually distinguishable. Ad-
ditionally, this force keeps colors that should be similar from
being exactly the same color. In the some domains, it may be
desirable to be able to identify each data point in order to make
a legend which this force enables. By de�nition, these forces
are explicitly short-distance repulsive forces. The forceis ap-
plied only if the distancer (c1;c2) is lower than a prede�ned
boundary value,bsepmax.The separation force forci is de�ne as:

~fsep(ci) = å
c^ r (ci ;c j)< bsepmax

1�
r (ci ;c j)
bsepmax

(5)

This force decreases linearly with the distance between two
colors becoming 0 whenr (c1;c2) = bsepmax.

4 APPLICATION DOMAINS

We present three example domain applications to demonstrate
the color selection algorithm. For each example, we describe
the process used to determine the relationships in the data,
which translate to the constraint edges graph used by by the

color selection algorithm. This process involves identifying the
data points which will be colored in a visualization, the ways in
which the data point are related, and the types of these relation-
ships. As discussed in section 3, The relationships can havetwo
types, similarity relationships and dissimilarity relationships.

4.1 School Districts

Fig. 2. The constraint graph for the school districts domain problem depicting the
edge weights between the school data points. The outer ring represents elemen-
tary schools and the inner ring shows middle schools.

Our �rst domain is a geographical visualization problem in-
volving how neighborhood regions within a suburban Maryland
county map to school districts, and how to visually represent
the three level feeder patterns of elementary, middle, and high
school districts. The result of the visualization is a county map
with regions colored by school district. The utility of thisex-
ample comes in working with a local school board to visualize
proposed adjustments to school districts and how it impactsthe
K-12 school feeder patterns.

Our �rst consideration is what data points will be colored in
our map visualization. The goal is to be able to see school dis-
tricts and how these districts are related, so the school districtsx
become the nodes in our constraint graph. The next considera-
tion is how these nodes are related. In this domain, there aretwo
clear relationships which we explore, feeder patterns and map
adjacency, but other relationships such as standardized testing
scores or school size could be considered as constraints. As
school assignments are discrete categorical values, feeder pat-
terns work well for demonstrating this coloring technique.

Now that we have identi�ed the relationships, we must cat-
egorize them as similarity or dissimilarity constraints. In the
case of the feeder patterns, we would like feeder schools to be
a similar color to the higher level school they feed into, so our
feeder relationship is a similarity constraint. Because ofthe na-
ture of map visualizations, it is easier to see region boundaries
when adjacent regions have distinct colors. Therefore, thecol-

ors of school districts which are adjacent should be distinct or
dissimilar so the map adjacency relationships is a dissimilarity
constraint. Note that only school at the same level (elemen-
tary, middle or high school) can be adjacent because districts at
different levels over lap.

The �nal constraint graph for this visualization is comprised
of school districts as nodes, feeder patterns as similaritycon-
straints and districts adjacency as dissimilarity constraints. In
addition to this basic constraint structure, the feeder pattern
edges were each assigned a weight proportional to the number
of students moving from one school to the other. This resulted
in the lower level school with the most students moving to a
higher level school having a color closest to the higher level
school.

4.2 Directory Structure

Fig. 3. The constraint graph for the directory structure domain problem. Solid
lines between nodes depict parent-child relationships and dashed lines represent
neighbor relationships (nodes sharing the same parent node).

The second is a domain problem that involves visualizing di-
rectory structures. This depicts similarity relationships of size
between parent and child directories along a directory treehier-
archy. For this visualization, the items that will be colored are
folders in the directory structure so folders will be the nodes
in our constraint graph. The most obvious relationship between
folders is a parent-child relationship so we chose to have a simi-
larity constraint between parent folders and their children. This
constraint alone is not that interesting, but there is also weight
to these constraints based on the percent the childs size is of
the parents size. This creates a coloring where it is easy to
see which sub-folder contains most of the content of the parent
folder.

The second constraint in the graph for this example is similar
to adjacent school districts in the previous domain. We would
like nodes that are adjacent in our visualization to be visually
distinct and in the sunburst visualization we chose (�gure 3),
folders at the same depth are displayed in a ring. If folders
in the same ring were assigned very similar colors, is would
be dif�cult to see the boundaries between their display areas.
Therefore, folders at the same depth are assigned dissimilarity
constraints.

4.3 File Type

The last example is different from our previous examples in
that we will use the algorithm generate a legend for a set of

Fig. 5. The constraint graph generated from the �le types depicted in �gure 4.

values instead of generating colors to be used directly in a visu-
alization. This was accomplished by modeling the relationships
between categories in the data rather than the relationships be-
tween the data points themselves. The desired result is to gen-
erate a coloring for the legend where similar categories areas-
signed similar colors. For a small number of categories, this
could be accomplished by hand. For example, if you were to
assign a color to elementary, middle and high schools it would
be easy to chose yellow for elementary, orange for middle, and
red for high schools, but as the set of categories expands andhas
more complex relationships, it becomes increasingly dif�cult to
create the color set by hand. To demonstrate this method, we
reused the �le system domain but added a �le type property to
each folder which was the most common �le type in the given
folder. This �le type property is our category which can be any
�le type, but we used a subset of common �le types for our leg-
end. Even our subset of �le types was to large and complex to
color well by hand so we represented the relationships between
the �le types as a tree which we then converted to a constraint
graph.

Figure 4 is a small portion of the relationship tree showing
the relationships between document types. Notice that DOC
and DOCX are both leaves at the same depth because they are
very similar �le types and ODT (Open Document Format) is
equally as similar to either of those types but not as similaras
they are to each other so it is placed as a leaf node one level up
from DOC and DOCX. Also notices that PDF is a document
type but is not an editable type like the other types so PDF is
places one level above the other types. It is useful to think of
the tree as a nested list where each list contains types that are
similar and the types within that group that are more similarare
then put into a sub-list. The tree in �gure 4 can be represented
by the following nested list structure:

(((DOCX;DOC);ODT); (TXT;HTML);PDF)

Once this tree has been constructed, a constraint graph is
generated by connecting each type, or node, to every other node
with a similarity constraint. As with the �le size graph, theim-
portant part of these constraints is the weight. The weightsare

Fig. 4. An example �le-type relationship tree displaying the relationship bet ween similar and dissimilar �le types.

determined using the tree structure by assign a wight of 1 be-
tween nodes at the bottom of a branch. For instance, DOC and
DOCX are at the same depth, and there are no sub-trees at the
same level, so the weight of the edge between these types is 1.
Likewise, the edge between TXT and HTML has a weight of 1.
Moving up the tree from these deepest relationships, the edges
at shallower levels have the weight 1=(depth+ 1) and are con-
nected to every other node at the same level, as well as nodes in
any sub-trees of the branch. By this method, ODT has an edge
to both DOC and DOCX, and these edges both have a wight of
1
2. Following from there, PDF has an edge to all other types
shown with weight13. If there are sub-trees at a given level that
have different depths, the maximum depth of the sub-trees is
used to calculate the weight.

Figure 5 shows the �nal constraint graph derived from the
�le type relationship tree. The nodes are colored with the col-
ors generated by the algorithm and the thickness of the edges
shows the derived weight. Note that the edges between TXT
and HTML, and DOC and DOCX have the highest weight. This
coloring can now be used to color any data which has a �le type
property, which we discuss an example of below. Although
we use �le types for this example, a legend for any categorical
property could be created using this method.

5 RESULTS

Once the constraints for each domain are generated, it is pos-
sible to generate visualizations of the original data usingthe
generated colors for the data points within the original data.
With the carefully selected constraints for each application do-
main, the optimized color set generated can be applied to the
data through a visualization toolkit of the users choosing.For
the �le system examples that follow, we use the JavaScript Info-
Vis toolkit to generate the visualizations, for the school district
visualization a custom Java application was created to display
and color the map areas. With the completed visualizations,
the viewer can effectively analysis the relationships within the
original data because of the optimized color set generated by
the coloring algorithm.

5.1 School Districts

In Figure 6, two levels of the school district feeder patterndata
is visualized. The map on the top right depicts the school dis-
tricts for middle schools, where the map on the top left shows
elementary school areas. Focusing on the top left area of both
maps, the two elementary schools (green and purple) are adja-
cent and distinctly colored as compared to one another. Those
two elementary school districts combined make up the whole
area of their parent node, the middle school area of the map
depicted in blue. Neither of the elementary schools are colored
identically to the parent, as a stronger general separationforce
was applied when coloring this data. For this visualization, the
bottom map depicts both levels of the hierarchy together using
colored rings - the inner being the middle school and the outer
ring being the elementary school.

The bottom visualization enables the viewer to identify cer-
tain anomalies. Because the weight of the similarity constraints
is proportional to the feeder pattern, the largest of child nodes
(elementary schools) feeding into a parent (middle school)will
be most similarly colored to its parent. Where the multiple
feeder schools have a similar number of students feeding into
the parent, the similarity constraint of the children to thepar-
ent will all be similar, yielding uniformly distributed colors.
In the case of an elementary school where the feeder ratio is
low as compared to its neighbors, that elementary school node
will have a low similarity weight as compared to the combined
general separation force and the dissimilarity constraintpush-
ing it from its neighbors, yielding a color that is very different
from those around it. As schools with low feeder ratios are less
desirable, especially when split between multiple regions, be-
ing able to quickly identify those regions is very useful to the
county school system when considering school district bound-
ary changes.

5.2 Directory Structure

The visualization in Figure 7, depicts a three-level directory
hierarchy, and the visualizations in Figures 8 shows a deeper
directory hierarchy. Examining the visualizations allowsthe
viewer to identify patters of directories where the parent to
child to directories are similar or dissimilar. This is useful in

Fig. 6. Example visualization from the school district domain area. Top: Maps showing elementary (left) and middle (right) school assignments. Bottom: Map showing
both elementary and middle school assignments merged on one map using a ring pattern. Within each region (neighborhoods sharing the same elementary and middle
school assignment), the outer ring shows the elementary school assignment, and the inside shows the middle school assignment. For added clarity, the boundaries of
the middle school assignments are displayed as black lines. The maps also show the locations of schools: diamonds indicate elementary schools and squares indicate
middle schools. [4].

Fig. 7. This �nal visualization from the directory structure domain proble m displays
a directory hierarchy in concentric rings out from the root directory in the center.
The directories have been colored with the automatic coloring algorithms, and
those directories that have a similar size will have a similar coloring as the parent
of that directory.

Fig. 8. This visualization depicts the Directory Structure constraint set as applied
to a deeper �le system hierarchy than that of Figure 7.

Fig. 9. This �nal visualization depicts the same data as displayed in Figu re 7, but
colored using the �le type constraints rather than the directory size .

�nding outliers in the hierarchy, most notably directoriesthat
are empty or that contain signi�cantly larger �les than those in
the hierarchy around it.

5.3 File Type

Lastly, the image in Figure 9 depicts the same directory hierar-
chy as the one displayed in Figure 7, but with a different set of
constraints. The colors selected by the algorithm are not based
on the data being visualized, rather, the coloring algorithm was
applied to the constraint graph generated from a tree of �le type
and sub-type associations. Each node in the �le system hierar-
chy is bound into a single �le type based on the count of the
most common �le type within the directory. This allows the
viewer to see groups of folders which all have similar domi-
nant �le types.

In this case, as previously mentioned, being able to quickly
�nd folders buried in a directory hierarchy that have an obvi-
ously dissimilar type as compared to those around it. Of in-
terest here is the �eld of digital forensics in law enforcement
where it may be necessary to search a suspects computer �les
for illegal materials. Searching an arbitrarily nested directory
structure by hand is a slow process for a human, and having vi-
sualization tools to quickly locate areas of potential interest are
useful in �nding evidence.

6 FUTURE WORK / CONCLUSIONS

We have presented a method for automatically generating a
constraint-based, optimized color set for use in visualizing data
points with one or more related discrete characteristics. Further,
we have demonstrated that the method is useful when applied to
two very different application domains. Further work towards
applying this technique to additional domains will continue, as

Fig. 10. A larger and deeper example data set colored using the �le type domain.

well as exploring using the lightness and saturation components
of the HLS color space for visualizing continuous attributes of
data points colored with the algorithm presented.

Additionally, there are opportunities to optimize and sim-
plify the algorithm by consolidating the forces. This could
involve combining the similarity and dissimilarity constraints
into a single relationship with positive and negative values.

ACKNOWLEDGMENTS

This project was based heavily on the unpublished paperColor
Selection for Visualizing Multiple Related Categorical Proper-
ties, by Blazej Bulka, Penny Rheingans, and Marie desJardins,
and we would like to thank them for providing the code for the
coloring algorithm. We would also like to extend thanks to the
University of Maryland, Baltimore County Center for Women
in Technology, who provided the funding for this research to
happen.

REFERENCES

[1] L. BERGMAN, B. ROGOWITZ, and L. TREINISH. Color selection for visualizing
multiple related categorical properties.In Proceedings of IEEE Visualization 1995,
pages 118 – 125, 1995.

[2] D. BORLAND and R. TAYLOR. Rainbow color map (still) considered harmful.IEEE
Computer Graphics and Applications, pages 27, 2, 14 – 17, 2007.

[3] C. A. BREWER. Color use guidelines for data representation.In Proceedings of the
Section on Statistical Graphics., pages 55 – 60, 1999.

[4] B. BULKA, P. RHEINGANS, and M. desJARDINS. A rule-based tool for assisting
colormap selection.Unpublished., 2011.

[5] D. FARNSWORTH. The farnsworth-munsell 100 hue test for the examination of
color discrimination. 1957.

[6] C. G. HEALEY. Choosing effective colours for data visualization.In Proceedings of
IEEE Visualization 1996 (San Francisco)., pages 263 – 270, 1996.

[7] P. RHEINGANS. Task-based color scale design.In Proceedings of Applied Image
and Pattern Recognition 1999., pages 35 – 43, 1999.

[8] N. ROBERTSON, D. P. SANDERS, P. SEYMOUR, and R. THOMAS. A newproof
of the four-color theorem.Electronic Research Announcements of the American Math-
ematical Society, pages 2, 17 – 25, 1996.

[9] C. WARE. Color sequences for univariate maps.IEEE Computer Graphics and
Applications, pages 8, 5, 41 – 49., 1988.

